

 Navigation

 	
 index

 	
 next |

 	rio 0.1.0 documentation

Welcome to rio’s documentation!

Rio is a simple, scalable and reliable distributed event-driven
system.

Rio receives actions via RESTful APIs and then triggers a bunch
of subscribed webhooks simultaneously and asynchronously.

Rio is still working in progress. Rio is a thin wrapper of Celery
and Flask, allowing you to use multiple kinds of broker to run
async webhooks, such as RabbitMQ, Redis, ZeroMQ, SQLAlchemy, etc.
It is Open Source and licensed under BSD License.

Contents:

	Quick Start
	Installing the Rio server

	Configure an Integration

	Configure The DSN

	Introduction
	Example Usage

	Installation
	Dependencies

	Setting up an Environment

	Install Rio

	Installing from Source

	Initializing the Configuration

	Running Migrations

	Starting the Web Service

	Starting Background Workers

	Process Management

	Setup a Reverse Proxy

	Removing Old Data

	Upgrading
	Upgrading the Package

	Running migrations

	Restarting Services

	Configurations
	Must set configuration items

	Webhook
	Setting up a Webhook

	Callback URL

	Content-Type

	Securing your webhooks

	Broker

	Storage Backend

	Worker

	Command Line Interface
	Subcommands

	Monitoring
	Health Check

	Queue Monitoring

	Logging

	API References

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Ju Lin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rio 0.1.0 documentation

Quick Start

Rio is designed to be out-of-the-box, yet powerful to extend. If you
never have experience in using Rio before, this tutorial will help
you getting started.

Getting started with Rio is a three steps process:

	Installing the Rio server

	Configure an Integration

	Configure The DSN

Installing the Rio server

For more details about how to install the Rio server, see Installation.

Basically, you need a Unix based OS, Python 2.7. You can use a database as
broker and backend, or use redis as broker and backend, or mix using RabbitMQ
as broker and database as backend. It’s all up to you.

Configure an Integration

To send messages to Rio you will need to use an SDK which support your
platform. If you can not find platform listed below, you can simply use
the JSON APIs to send messages.

Below is a list of Rio SDKs:

	Python SDK

Configure The DSN

After you have created a project and a sender in Rio, you will be
given a DSN value. This is basically similar to Sentry DSN. It is a
standard URL and a configuration parameter for Rio clients. The DSN
can be found in Rio by navigation to project settings.

 Copyright 2016, Ju Lin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rio 0.1.0 documentation

Introduction

In computer programming, event-driven programming is a programming paradigm
in which the flow the the program is determined by events. Event-driven
programming is widely used in GUI development. Since microservice architecture
is thriving these year, a demand to send messages from one system to many other
systems is rising. Rio is a system trying to solve this problem.

Rio is standing on giants’ shoulders: Flask + Celery. In Rio, there are a
job queue playing the role of main loop, and once message sent to job queue,
a bunch of HTTP webhooks will be triggered simultaneously. Logging and
monitoring are important task as well in Rio. You can easily find out
latest bad behaviour webhook calling and retrigger it if possible.

Communication between services is a tough problem for developers. There are two
popular paradigm to complete asynchronous lightweight messaging tasks:
Choreography and Orchestration. And Rio has a flavour of Choreography. As
producer of the message doesn’t have to know what other service supposed to do,
it just provides an event, to which consumers may respond or no. On the other
hand, as consumer of the message doesn’t have to keep listening on message
queue, it just provides an handler, to which consumer may be called or no.
As a result, both two kinds of system need only behave theirselves.

It is recommended to put webhook under firewall protection so that villainous
cracker have no opportunity to attack.

Example Usage

Rio assumes you have a sender service with SDK integrated, and some
receiver services which implement HTTP callback tasks.

In Rio, you need to create a project first to receive message and traffic
payload. Before sending message, you have to create handlers for an event in
project. These operation can be done via CLI tools or Dashboard.

In sender side, you need to send message:

from rio_client import Client
client = Client(dsn='http://sender:*********@rio.intra.example.org/project')
client.emit('comment-published', {'ip': 127.0.0.1, 'content': 'I am a spammer'})

In receiver side, you need to define a simple webhook. For instance, this is a
Flask view function:

@app.route('/webhook/comment/antispam', methods=['POST])
def antispam_comment():
 if is_spam_content(request.form['content']):
 ban_ip(request.form['ip])
 return jsonify(status='success', retval=0)

Or in Ruby on Rails:

def antispam_comment
 ban_ip(params[:ip]) if is_spam_content(params[:content])
 render :json => {:status => 'success', :retval => 0}

 Copyright 2016, Ju Lin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rio 0.1.0 documentation

Installation

This guide will step you through setting up a Python-based virtualenv, installing
the required packages, and configuring the basic web service.

Dependencies

Some basic prerequisites which you’ll need in order to run Rio:

	A UNIX-based operating system.

	Python 2.7

	python-setuptools, python-pip, python-dev, libffi-dev, libssl-dev, libyaml-dev

	A broker. It might be one of RabbitMQ(recommend), Redis(recommend), MongoDB,
ZeroMQ, CouchDB, SQLAlchemy, Django ORM, Amazon SQS, and more..

	A result store. It might be one of AMQP, Redis, memcached, MongoDB, SQLAlchemy,
Django ORM, Cassandra

	Nginx (nginx-full)

	A dedicated domain to host Rio on (i.e. rio.your-corp.com).

If you’re building from source you’ll also need:

Node.js 4 or newer.

Setting up an Environment

The first thing you’ll need is the Python virtualenv package.
You probably already have this, but if not, you can install it with:

$ pip install -U virtualenv

It’s also available as python-virtualenv on ubuntu in the package manager.

Once that’s done, choose a location for the environment, and create it with the
virtualenv command. For our guide, we’re going to choose /var/www/rio:

$ mkdir /var/www/rio
$ virtualenv --distribute /var/www/rio

Finally, activate your virtualenv:

$ source /www/rio/bin/activate

Install Rio

Once you’ve got the environment setup, you can install Rio and all its dependencies
with the same command you used to grab virtualenv:

$ pip install -U rio

To check installation successfully, run Rio CLI, via rio:

$ rio --help

Installing from Source

If you are going to install from source, you will need to install npm.
Once your system is prepared, symlink your source into the virtualenv:

$ python setup.py develop

Initializing the Configuration

To create default configuration, you will use the init subcommand of rio.
You can specify an alternative configuration path as the argument to init,
otherwise it will use the default of current directory:

$ rio init /etc/rio

Set RIO_CONF as an environment variable so that rio can find this directory
later:

$ export RIO_CONF=/etc/rio

The init subcommand create a config.py. Use your flavoured text editor
to edit config.py file to adjust to your infrastructure.

You need to configure:

	configure_broker

	configure_storage_backend

Running Migrations

Rio provides an easy way to run migrations on the database on version upgrades.
Before running it for the first time you’ll need to make sure you’ve created the
database:

mysql> CREATE DATABASE rio;

Once done, you can create the initial schema using the upgrade command:

$ rio upgrade

Starting the Web Service

Rio provides a built-in webserver (powered by Gunicorn) to get you off the ground
quickly. You can also setup Rio as WSGI application by specifying wsgi application
rio.app:app. To start the built-in webserver run rio start:

$ rio start web

You should now be able to test the web service by visiting http://localhost:8009/.

Starting Background Workers

A large amount of Rio’s work is managed via background workers. These need run in
addition to the web service workers:

$ rio start worker

Process Management

It is recommended to using process management software to keep Rio processes alive.
supervisor is a fancy tool to archive that. This is an example of supervisor
config part:

[program:rio-web]
directory=/www/rio/
environment=RIO_CONF="/etc/rio"
command=/www/rio/bin/rio start web
autostart=true
autorestart=true
redirect_stderr=true
stdout_logfile=syslog
stderr_logfile=syslog

[program:rio-worker]
directory=/www/rio/
environment=RIO_CONF="/etc/rio"
command=/www/rio/bin/sentry start worker
autostart=true
autorestart=true
redirect_stderr=true
stdout_logfile=syslog
stderr_logfile=syslog

Setup a Reverse Proxy

You’ll use the builtin HttpProxyModule within Nginx to handle proxying:

upstream rio_servers {
 server 127.0.0.1:9001;
}

server {
 listen 80;
 server_name rio.intra.yourcorp.com;

 location / {
 client_max_body_size 10M;
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_pass http://rio_servers;
 }
}

Removing Old Data

One of the most important things you’re going to need to be aware of is storage costs.
The stale data in Backend storage should be automatically removed by a cron job:

$ crontab -e
0 0 * * * RIO_CONF=/etc/rio rio cleanup --days=30

 Copyright 2016, Ju Lin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rio 0.1.0 documentation

Upgrading

Upgrading the Package

$ pip install -U rio

Running migrations

$ rio upgrade

Restarting Services

$ supervisorctl restart rio-web
$ supervisorctl restart rio-worker

 Copyright 2016, Ju Lin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rio 0.1.0 documentation

Configurations

Must set configuration items

SECRET_KEY

the secret key.

DO NOT LEAK IT.

GRAPH_BACKEND

This item specifies the graph backend.
Choices:

	directory, default

	sqlalchemy

SQLALCHEMY_DATABASE_URI

This item specifies the database.
See more at

CELERY_BROKER_URL

This item specifies the broker.
See http://celery.readthedocs.org/en/latest/configuration.html#broker-url

CELERY_RESULT_BACKEND

This item specifies the result backend.
See http://celery.readthedocs.org/en/latest/configuration.html#database-backend-settings

 Copyright 2016, Ju Lin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rio 0.1.0 documentation

Webhook

Setting up a Webhook

Callback URL

This is the server endpoint that will receive the webhook payload.
You can set your webhook callback URL in dashboard.

Content-Type

Webhooks can be delivered using different content types.
Currently, Rio support two basic ways to send data:

	The application/json content type will deliver the JSON payload directly as the body of the POST.

	The application/www-form-urlencoded content type will send the JSON payload as a form parameter called “payload”.

The default content type of application/www-form-urlencoded.
The content type depends on how you set your webhook Content-Type in Webhook headers.
Choose the one that best fits your needs.

Securing your webhooks

Once your server is configured to receive payloads, it will listen for
any payload sent to the endpoint you configured.
For security reasons, you probably want to limit requests to those coming
from Rio.
There are a few ways to go about this.
For example, you could opt to whitelist requets from Rio’s IP address.
But a far easier method is to set up a secret token and validate the information.

Setting your secret token

Validating payloads from Rio

 Copyright 2016, Ju Lin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rio 0.1.0 documentation

Broker

 Copyright 2016, Ju Lin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rio 0.1.0 documentation

Storage Backend

 Copyright 2016, Ju Lin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rio 0.1.0 documentation

Worker

 Copyright 2016, Ju Lin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rio 0.1.0 documentation

Command Line Interface

Rio is cross-platform event driven system built with love.

Subcommands

	celery

	db

	init

	shell

	start

	runserver

 Copyright 2016, Ju Lin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rio 0.1.0 documentation

Monitoring

Health Check

Rio provides several ways to monitor the system status. This may be as simple
as “is the backend serving requests” to more in-depth and gauging potential
configuration problems. In some cases these checks will be exposed in the UI
though generally only to superusers.

The following endpoint is exposed to aid in automated reporting:

http://rio.example.com/_health/

Generally this is most useful if you’re using it as a health check in something
like HAProxy.

In HAProxy, you could add this to your config:

option httpchk /_health/

That said, we also expose additional checks via the same endpoint by passing ?full:

$ curl -i http://rio.example.com/_health/?full
HTTP/1.0 500 INTERNAL SERVER ERROR
Content-Type: application/json

{
 "problems": [
 "Background workers haven't checked in recently. This can mean an issue
 with your configuration or a serious backlog in tasks."
]
}

Queue Monitoring

 Copyright 2016, Ju Lin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rio 0.1.0 documentation

Logging

Sometimes you might want to dive into Rio to find out the data whether it is
right or wrong. Python’s standard logging module is used to implement
informational and debug log output with Rio. You can integrate Rio’s logging
in a standard way with other libraries and applications.

There are several loggers listed below that can be turned on:

	rio.tasks - controls asynchronous tasks running logging. set to
logging.INFO for requesting webhook, logging.DEBUG for requesting
webhook and receiving webhook’s response, logging.ERROR for error
response.

	rio.event - controls event emitting logging. set to logging.INFO
for receiving action.

For example, you can writing logging configure codes in config file:

import logging

logger = logging.getLogger('rio.tasks')
logger.addHandler(logging.FileHandler('/tmp/rio.log'))
logger.setLevel(logging.DEBUG)

logger = logging.getLogger('rio.event')
logger.addHandler(logging.FileHandler('/tmp/rio.log'))
logger.setLevel(logging.DEBUG)

Once an action was emitted, Rio would apply logging into your handlers:

$ curl http://example:example@127.0.0.1:5000/event/example/emit/example -X POST
{
 "event": {
 "uuid": "2df0b14b-07b9-42ab-9595-59a58829d505"
 },
 "message": "ok",
 "task": {
 "id": "f1c10766-b428-4ac7-ac0b-6bf2b4420d15"
 }
}

$ cat /tmp/rio.log
EMIT 2df0b14b-07b9-42ab-9595-59a58829d505 "example" "example" {}
REQUEST 2df0b14b-07b9-42ab-9595-59a58829d505 POST http://127.0.0.1:5000 {}
RESPONSE 2df0b14b-07b9-42ab-9595-59a58829d505 POST http://127.0.0.1:5000 {"message": "OK"}

 Copyright 2016, Ju Lin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	rio 0.1.0 documentation

API References

 Copyright 2016, Ju Lin.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	rio 0.1.0 documentation

Index

 Copyright 2016, Ju Lin.
 Created using Sphinx 1.3.5.

 _static/comment.png

_static/down.png

alternatives.html

 Navigation

 		
 index

 		rio 0.1.0 documentation »

Alternatives

PubSubHubbub

 © Copyright 2016, Ju Lin.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		rio 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Ju Lin.
 Created using Sphinx 1.3.5.

_static/comment-close.png

transport.html

 Navigation

 		
 index

 		rio 0.1.0 documentation »

Transport

A transport is responsbile for collecting actions from services,
converting them to a Rio asynchronous task. This approach is
modular which allows for transports that acccept any type of data
from any producer comes with transports for HTTP, thrift, etc.

 © Copyright 2016, Ju Lin.
 Created using Sphinx 1.3.5.

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

