
rio Documentation
Release 0.1.0

Ju Lin

May 05, 2016

Contents

1 Quick Start 3
1.1 Installing the Rio server . 3
1.2 Configure an Integration . 3
1.3 Configure The DSN . 3

2 Introduction 5
2.1 Example Usage . 5

3 Installation 7
3.1 Dependencies . 7
3.2 Setting up an Environment . 7
3.3 Install Rio . 8
3.4 Installing from Source . 8
3.5 Initializing the Configuration . 8
3.6 Running Migrations . 8
3.7 Starting the Web Service . 9
3.8 Starting Background Workers . 9
3.9 Process Management . 9
3.10 Setup a Reverse Proxy . 9
3.11 Removing Old Data . 10

4 Upgrading 11
4.1 Upgrading the Package . 11
4.2 Running migrations . 11
4.3 Restarting Services . 11

5 Configurations 13
5.1 Must set configuration items . 13

6 Webhook 15
6.1 Setting up a Webhook . 15
6.2 Callback URL . 15
6.3 Content-Type . 15
6.4 Securing your webhooks . 15

7 Broker 17

8 Storage Backend 19

i

9 Worker 21

10 Command Line Interface 23
10.1 Subcommands . 23

11 Monitoring 25
11.1 Health Check . 25
11.2 Queue Monitoring . 25

12 Logging 27

13 API References 29

14 Indices and tables 31

ii

rio Documentation, Release 0.1.0

Rio is a simple, scalable and reliable distributed event-driven system.

Rio receives actions via RESTful APIs and then triggers a bunch of subscribed webhooks simultaneously and asyn-
chronously.

Rio is still working in progress. Rio is a thin wrapper of Celery and Flask, allowing you to use multiple kinds of broker
to run async webhooks, such as RabbitMQ, Redis, ZeroMQ, SQLAlchemy, etc. It is Open Source and licensed under
BSD License.

Contents:

Contents 1

rio Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Quick Start

Rio is designed to be out-of-the-box, yet powerful to extend. If you never have experience in using Rio before, this
tutorial will help you getting started.

Getting started with Rio is a three steps process:

• Installing the Rio server

• Configure an Integration

• Configure The DSN

1.1 Installing the Rio server

For more details about how to install the Rio server, see Installation.

Basically, you need a Unix based OS, Python 2.7. You can use a database as broker and backend, or use redis as broker
and backend, or mix using RabbitMQ as broker and database as backend. It’s all up to you.

1.2 Configure an Integration

To send messages to Rio you will need to use an SDK which support your platform. If you can not find platform listed
below, you can simply use the JSON APIs to send messages.

Below is a list of Rio SDKs:

• Python SDK

1.3 Configure The DSN

After you have created a project and a sender in Rio, you will be given a DSN value. This is basically similar to Sentry
DSN. It is a standard URL and a configuration parameter for Rio clients. The DSN can be found in Rio by navigation
to project settings.

3

rio Documentation, Release 0.1.0

4 Chapter 1. Quick Start

CHAPTER 2

Introduction

In computer programming, event-driven programming is a programming paradigm in which the flow the the program is
determined by events. Event-driven programming is widely used in GUI development. Since microservice architecture
is thriving these year, a demand to send messages from one system to many other systems is rising. Rio is a system
trying to solve this problem.

Rio is standing on giants’ shoulders: Flask + Celery. In Rio, there are a job queue playing the role of main loop,
and once message sent to job queue, a bunch of HTTP webhooks will be triggered simultaneously. Logging and
monitoring are important task as well in Rio. You can easily find out latest bad behaviour webhook calling and
retrigger it if possible.

Communication between services is a tough problem for developers. There are two popular paradigm to complete
asynchronous lightweight messaging tasks: Choreography and Orchestration. And Rio has a flavour of Choreography.
As producer of the message doesn’t have to know what other service supposed to do, it just provides an event, to
which consumers may respond or no. On the other hand, as consumer of the message doesn’t have to keep listening
on message queue, it just provides an handler, to which consumer may be called or no. As a result, both two kinds of
system need only behave theirselves.

It is recommended to put webhook under firewall protection so that villainous cracker have no opportunity to attack.

2.1 Example Usage

Rio assumes you have a sender service with SDK integrated, and some receiver services which implement HTTP
callback tasks.

In Rio, you need to create a project first to receive message and traffic payload. Before sending message, you have to
create handlers for an event in project. These operation can be done via CLI tools or Dashboard.

In sender side, you need to send message:

from rio_client import Client
client = Client(dsn='http://sender:*********@rio.intra.example.org/project')
client.emit('comment-published', {'ip': 127.0.0.1, 'content': 'I am a spammer'})

In receiver side, you need to define a simple webhook. For instance, this is a Flask view function:

@app.route('/webhook/comment/antispam', methods=['POST])
def antispam_comment():

if is_spam_content(request.form['content']):
ban_ip(request.form['ip])

return jsonify(status='success', retval=0)

Or in Ruby on Rails:

5

rio Documentation, Release 0.1.0

def antispam_comment
ban_ip(params[:ip]) if is_spam_content(params[:content])
render :json => {:status => 'success', :retval => 0}

6 Chapter 2. Introduction

CHAPTER 3

Installation

This guide will step you through setting up a Python-based virtualenv, installing the required packages, and configuring
the basic web service.

3.1 Dependencies

Some basic prerequisites which you’ll need in order to run Rio:

• A UNIX-based operating system.

• Python 2.7

• python-setuptools, python-pip, python-dev, libffi-dev, libssl-dev, libyaml-dev

• A broker. It might be one of RabbitMQ(recommend), Redis(recommend), MongoDB, ZeroMQ, CouchDB,
SQLAlchemy, Django ORM, Amazon SQS, and more..

• A result store. It might be one of AMQP, Redis, memcached, MongoDB, SQLAlchemy, Django ORM, Cassan-
dra

• Nginx (nginx-full)

• A dedicated domain to host Rio on (i.e. rio.your-corp.com).

If you’re building from source you’ll also need:

Node.js 4 or newer.

3.2 Setting up an Environment

The first thing you’ll need is the Python virtualenv package. You probably already have this, but if not, you can install
it with:

$ pip install -U virtualenv

It’s also available as python-virtualenv on ubuntu in the package manager.

Once that’s done, choose a location for the environment, and create it with the virtualenv command. For our guide,
we’re going to choose /var/www/rio:

$ mkdir /var/www/rio
$ virtualenv --distribute /var/www/rio

7

rio Documentation, Release 0.1.0

Finally, activate your virtualenv:

$ source /www/rio/bin/activate

3.3 Install Rio

Once you’ve got the environment setup, you can install Rio and all its dependencies with the same command you used
to grab virtualenv:

$ pip install -U rio

To check installation successfully, run Rio CLI, via rio:

$ rio --help

3.4 Installing from Source

If you are going to install from source, you will need to install npm. Once your system is prepared, symlink your
source into the virtualenv:

$ python setup.py develop

3.5 Initializing the Configuration

To create default configuration, you will use the init subcommand of rio. You can specify an alternative configuration
path as the argument to init, otherwise it will use the default of current directory:

$ rio init /etc/rio

Set RIO_CONF as an environment variable so that rio can find this directory later:

$ export RIO_CONF=/etc/rio

The init subcommand create a config.py. Use your flavoured text editor to edit config.py file to adjust to your infras-
tructure.

You need to configure:

• configure_broker

• configure_storage_backend

3.6 Running Migrations

Rio provides an easy way to run migrations on the database on version upgrades. Before running it for the first time
you’ll need to make sure you’ve created the database:

mysql> CREATE DATABASE rio;

Once done, you can create the initial schema using the upgrade command:

8 Chapter 3. Installation

rio Documentation, Release 0.1.0

$ rio upgrade

3.7 Starting the Web Service

Rio provides a built-in webserver (powered by Gunicorn) to get you off the ground quickly. You can also setup Rio as
WSGI application by specifying wsgi application rio.app:app. To start the built-in webserver run rio start:

$ rio start web

You should now be able to test the web service by visiting http://localhost:8009/.

3.8 Starting Background Workers

A large amount of Rio’s work is managed via background workers. These need run in addition to the web service
workers:

$ rio start worker

3.9 Process Management

It is recommended to using process management software to keep Rio processes alive. supervisor is a fancy tool to
archive that. This is an example of supervisor config part:

[program:rio-web]
directory=/www/rio/
environment=RIO_CONF="/etc/rio"
command=/www/rio/bin/rio start web
autostart=true
autorestart=true
redirect_stderr=true
stdout_logfile=syslog
stderr_logfile=syslog

[program:rio-worker]
directory=/www/rio/
environment=RIO_CONF="/etc/rio"
command=/www/rio/bin/sentry start worker
autostart=true
autorestart=true
redirect_stderr=true
stdout_logfile=syslog
stderr_logfile=syslog

3.10 Setup a Reverse Proxy

You’ll use the builtin HttpProxyModule within Nginx to handle proxying:

3.7. Starting the Web Service 9

http://localhost:8009/

rio Documentation, Release 0.1.0

upstream rio_servers {
server 127.0.0.1:9001;

}

server {
listen 80;
server_name rio.intra.yourcorp.com;

location / {
client_max_body_size 10M;
proxy_redirect off;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_pass http://rio_servers;

}
}

3.11 Removing Old Data

One of the most important things you’re going to need to be aware of is storage costs. The stale data in Backend
storage should be automatically removed by a cron job:

$ crontab -e
0 0 * * * RIO_CONF=/etc/rio rio cleanup --days=30

10 Chapter 3. Installation

CHAPTER 4

Upgrading

4.1 Upgrading the Package

$ pip install -U rio

4.2 Running migrations

$ rio upgrade

4.3 Restarting Services

$ supervisorctl restart rio-web $ supervisorctl restart rio-worker

11

rio Documentation, Release 0.1.0

12 Chapter 4. Upgrading

CHAPTER 5

Configurations

5.1 Must set configuration items

5.1.1 SECRET_KEY

the secret key.

DO NOT LEAK IT.

5.1.2 GRAPH_BACKEND

This item specifies the graph backend. Choices:

• directory, default

• sqlalchemy

5.1.3 SQLALCHEMY_DATABASE_URI

This item specifies the database. See more at

5.1.4 CELERY_BROKER_URL

This item specifies the broker. See http://celery.readthedocs.org/en/latest/configuration.html#broker-url

5.1.5 CELERY_RESULT_BACKEND

This item specifies the result backend. See http://celery.readthedocs.org/en/latest/configuration.html#database-
backend-settings

13

http://celery.readthedocs.org/en/latest/configuration.html#broker-url
http://celery.readthedocs.org/en/latest/configuration.html#database-backend-settings
http://celery.readthedocs.org/en/latest/configuration.html#database-backend-settings

rio Documentation, Release 0.1.0

14 Chapter 5. Configurations

CHAPTER 6

Webhook

6.1 Setting up a Webhook

6.2 Callback URL

This is the server endpoint that will receive the webhook payload. You can set your webhook callback URL in
dashboard.

6.3 Content-Type

Webhooks can be delivered using different content types. Currently, Rio support two basic ways to send data:

• The application/json content type will deliver the JSON payload directly as the body of the POST.

• The application/www-form-urlencoded content type will send the JSON payload as a form parameter called
“payload”.

The default content type of application/www-form-urlencoded. The content type depends on how you set your web-
hook Content-Type in Webhook headers. Choose the one that best fits your needs.

6.4 Securing your webhooks

Once your server is configured to receive payloads, it will listen for any payload sent to the endpoint you configured.
For security reasons, you probably want to limit requests to those coming from Rio. There are a few ways to go about
this. For example, you could opt to whitelist requets from Rio’s IP address. But a far easier method is to set up a secret
token and validate the information.

6.4.1 Setting your secret token

6.4.2 Validating payloads from Rio

15

rio Documentation, Release 0.1.0

16 Chapter 6. Webhook

CHAPTER 7

Broker

17

rio Documentation, Release 0.1.0

18 Chapter 7. Broker

CHAPTER 8

Storage Backend

19

rio Documentation, Release 0.1.0

20 Chapter 8. Storage Backend

CHAPTER 9

Worker

21

rio Documentation, Release 0.1.0

22 Chapter 9. Worker

CHAPTER 10

Command Line Interface

Rio is cross-platform event driven system built with love.

10.1 Subcommands

• celery

• db

• init

• shell

• start

• runserver

23

rio Documentation, Release 0.1.0

24 Chapter 10. Command Line Interface

CHAPTER 11

Monitoring

11.1 Health Check

Rio provides several ways to monitor the system status. This may be as simple as “is the backend serving requests”
to more in-depth and gauging potential configuration problems. In some cases these checks will be exposed in the UI
though generally only to superusers.

The following endpoint is exposed to aid in automated reporting:

http://rio.example.com/_health/

Generally this is most useful if you’re using it as a health check in something like HAProxy.

In HAProxy, you could add this to your config:

option httpchk /_health/

That said, we also expose additional checks via the same endpoint by passing ?full:

$ curl -i http://rio.example.com/_health/?full
HTTP/1.0 500 INTERNAL SERVER ERROR
Content-Type: application/json

{
"problems": [
"Background workers haven't checked in recently. This can mean an issue
with your configuration or a serious backlog in tasks."

]
}

11.2 Queue Monitoring

25

rio Documentation, Release 0.1.0

26 Chapter 11. Monitoring

CHAPTER 12

Logging

Sometimes you might want to dive into Rio to find out the data whether it is right or wrong. Python’s standard logging
module is used to implement informational and debug log output with Rio. You can integrate Rio’s logging in a
standard way with other libraries and applications.

There are several loggers listed below that can be turned on:

• rio.tasks - controls asynchronous tasks running logging. set to logging.INFO for requesting webhook, log-
ging.DEBUG for requesting webhook and receiving webhook’s response, logging.ERROR for error response.

• rio.event - controls event emitting logging. set to logging.INFO for receiving action.

For example, you can writing logging configure codes in config file:

import logging

logger = logging.getLogger('rio.tasks')
logger.addHandler(logging.FileHandler('/tmp/rio.log'))
logger.setLevel(logging.DEBUG)

logger = logging.getLogger('rio.event')
logger.addHandler(logging.FileHandler('/tmp/rio.log'))
logger.setLevel(logging.DEBUG)

Once an action was emitted, Rio would apply logging into your handlers:

$ curl http://example:example@127.0.0.1:5000/event/example/emit/example -X POST
{

"event": {
"uuid": "2df0b14b-07b9-42ab-9595-59a58829d505"

},
"message": "ok",
"task": {
"id": "f1c10766-b428-4ac7-ac0b-6bf2b4420d15"

}
}

$ cat /tmp/rio.log
EMIT 2df0b14b-07b9-42ab-9595-59a58829d505 "example" "example" {}
REQUEST 2df0b14b-07b9-42ab-9595-59a58829d505 POST http://127.0.0.1:5000 {}
RESPONSE 2df0b14b-07b9-42ab-9595-59a58829d505 POST http://127.0.0.1:5000 {"message": "OK"}

27

rio Documentation, Release 0.1.0

28 Chapter 12. Logging

CHAPTER 13

API References

29

rio Documentation, Release 0.1.0

30 Chapter 13. API References

CHAPTER 14

Indices and tables

• genindex

• modindex

• search

31

	Quick Start
	Installing the Rio server
	Configure an Integration
	Configure The DSN

	Introduction
	Example Usage

	Installation
	Dependencies
	Setting up an Environment
	Install Rio
	Installing from Source
	Initializing the Configuration
	Running Migrations
	Starting the Web Service
	Starting Background Workers
	Process Management
	Setup a Reverse Proxy
	Removing Old Data

	Upgrading
	Upgrading the Package
	Running migrations
	Restarting Services

	Configurations
	Must set configuration items

	Webhook
	Setting up a Webhook
	Callback URL
	Content-Type
	Securing your webhooks

	Broker
	Storage Backend
	Worker
	Command Line Interface
	Subcommands

	Monitoring
	Health Check
	Queue Monitoring

	Logging
	API References
	Indices and tables

